Doubeecat's Blog

“即便前路混沌,同她走过,才算人间。”

0%

CodeForcesRound#1206题解

A. Choose Two Numbers

题目描述:

给你两个集合 $A,B$, 要求你分别从$A,B$中取出一个数,使得两数之和不在$A$中也不在$B$中

$n ,m\leq 100$

解题思路:

看数据范围应该很容易想出来一个 $O(nm(n+m))$ 的暴力,枚举 $A,B$ 中的每一个数,将他们相加之后再在两个集合中判定一下,这个题就完了。事实上由于$n ,m\leq 100$ 可以轻松通过本题。

但是显然,还会有更好的解法,我们可以观察到,如果选取这两个集合中最大的数相加,显然这个和不会出现在两个集合里面,复杂度下降到了 $O(m \log {m} + n \log {n}) $ 如果用排序还可以达到$O(m+n)$的线性时间复杂度(排序是作者给出的解法,实际上可以直接读入的时候求出)

代码:

$O(nm(n+m))$

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#include <cstdio>
#include <cctype>

inline int read() {
char v = getchar();int x = 0,f = 1;
while (!isdigit(v)) {if(v == '-')f = -1;v = getchar();}
while (isdigit(v)) {x = x * 10 + v - 48;v = getchar();}
return x * f;
}

const int N = 110;

int a[N],b[N],n,m,a1,a2;

int main() {
n = read();
for (int i = 1;i <= n;++i) {
a[i] = read();
}
m = read();
for (int i = 1;i <= m;++i) {
b[i] = read();
}
for (int i = 1;i <= n;++i) {
for (int j = 1;j <= m;++j) {
a1 = a[i],a2 = b[j];
int sum = a1 + a2;bool flag = 0;
for (int k = 1;k <= n;++k) {
if (sum == a[k]) {
flag = 1;
break;
}
}
for (int k = 1;k <= m;++k) {
if (sum == b[k]) {
flag = 1;
break;
}
}
if (!flag) {
printf("%d %d\n",a1,a2);
return 0;
}
}
}
return 0;
}

$O(m + n) $

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
#include <cstdio>
#include <cctype>
#include <algorithm>
using std::max;
inline int read() {
char v = getchar();int x = 0,f = 1;
while (!isdigit(v)) {if(v == '-')f = -1;v = getchar();}
while (isdigit(v)) {x = x * 10 + v - 48;v = getchar();}
return x * f;
}

const int N = 110;
int tmp,a,b;

int main() {
n = read();
for (int i = 1;i <= n;++i) {
tmp = read();
a = max(a,tmp);
}
m = read();
for (int i = 1;i <= m;++i) {
tmp = read();
b = max(b,tmp);
}
printf("%d %d",a,b);
return 0;
}

B. Make Product Equal One

题目描述:

给你一个有 $n$ 个数字的数列,你有两种操作:将某个数 $+1$ 或 $-1$ 。求用最小的操作次数让这个数列的每一项乘起来等于 1

$n \leq 10^5$

解题思路:

用C换来的

分析一下,每个数字只有两种情况:变成 1 或者变成 -1

所以每个数字的代价就是min(abs(1 - a[i]),abs(-1 - a[i]))

值得一提的几个大坑点是,最后可能会变成 -1 ,所以顺便记一下,如果最后变成 -1 了记得加上 2 。而且 0 也要记,最后要加上 0 的个数。

时间复杂度$O(n)$

代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#include <cstdio>
#include <cctype>
#include <cmath>
#include <algorithm>
#include <iostream>
using namespace std;
#define int long long
inline int read() {
char v = getchar();int x = 0,f = 1;
while (!isdigit(v)) {if(v == '-')f = -1;v = getchar();}
while (isdigit(v)) {x = x * 10 + v - 48;v = getchar();}
return x * f;
}

const int N = 100010;

int pre[N],n,p1,p2,ans,z,res = 1;

signed main() {
n = read();
for (int i = 1;i <= n;++i) {
pre[i] = read();
if (pre[i] == 0) {
z++;
}
}
sort(pre+1,pre+1+n);
for (int i = 1;i <= n;++i) {
if (pre[i] <= -1) {
ans += (-1 - pre[i]);
res *= -1;
}
else if (pre[i] >= 1) {
ans += (pre[i] - 1);
res *= 1;
}
}
if (res == -1) {
if (z) {
ans += z;
}
else {
ans += 2;
}
}
else {
ans += z;
}
cout << ans;

return 0;
}

C. Almost Equal

题目描述:

给定一个数字 $n$ ,要求你使用 $1…2*n$ 的数字构造出一个环,使得这个环每三个数相加的和之间差不超过 1.

解题思路:

偶数显然不能构造,奇数按照样例构造即可,具体看代码

代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#include <cstdio>
#include <cctype>
#include <cmath>
#include <algorithm>
using std::min;
inline int read() {
char v = getchar();int x = 0,f = 1;
while (!isdigit(v)) {if(v == '-')f = -1;v = getchar();}
while (isdigit(v)) {x = x * 10 + v - 48;v = getchar();}
return x * f;
}

const int N = 200010;

int pre[N],n,now = 1;

int main() {
n = read();
if (n % 2 == 0) {
printf("NO");
return 0;
}
for (int i = 1;i <= 2*n;++i) {
pre[now] = i;
if (i % 2 == 0) {
now += 1;
}
else {
if ((i / 2) % 2) {
now -= n;
}
else {
now += n;
}
}
}
printf("YES\n");
for (int i = 1;i <= 2*n;++i) {
printf("%d ",pre[i]);
}
return 0;
}

D. Shortest Circle

题目描述:

给你 $n$ 个点,每个点有一个点权,两点之间有边当且仅当 $a[i] \& a[j] \ne 0$ ,求出图中最小环的长度。

$n \leq 100000,a_i \leq 10^{18}$

解题思路:

直接构造显然是 $O(n^2)$ 的,考虑优化建边的过程。

首先可以观察到,如果二进制内某一位有 3 个 1 ,那么肯定有一个长度为 3 的环,直接输出即可。

那么现在问题简化为了每位至多有两个 1 的情况,我们可以发现每一位最多只有一条边,所以整张图其实至多剩下 60 条边了!接下来直接跑一遍最小环即可,我使用的是 Floyd .

注意开 long long

代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#include <cstdio>
#include <cctype>
#define min(a,b) ((a) < (b) ? (a) : (b))
#define int long long
const int N = 100010;
const int M = 130;

inline int read() {
char v = getchar();int x = 0,f = 1;
while (!isdigit(v)) {if (v == '-')f = -1;v = getchar();}
while (isdigit(v)) {x = x * 10 + v - 48;v = getchar();}
return x * f;
}

int a[N],pre[N],f[M][M],n,cnt,dis[M][M],ans = 0x3f3f3f3f;
signed main() {
n = read();
for (int i = 1;i <= n;++i) {
a[i] = read();
if (a[i] != 0) pre[++cnt] = a[i];
}
for (int i = 1;i <= 64;++i) {
int cnt = 0;
for (int j = 1;j <= n;++j) {
if (a[j]>>(i-1)&1) {
cnt++;
}
}
if (cnt >= 3) {
printf("3");
return 0;
}
}
for (int i = 1;i <= cnt;++i) {
for (int j = 1;j <= cnt;++j) {
if (i != j && (pre[i] & pre[j]) != 0) {
f[i][j] = 1;dis[i][j] = 1;
}
else {
f[i][j] = dis[i][j] = 0x3f3f3f3f;
}
}
}
for (int k = 1;k <= cnt;++k) {
for (int i = 1;i < k;++i) {
for (int j = i+1;j < k;++j) {
ans = min(dis[i][j] + f[i][k] + f[k][j],ans);
}
}
for (int i = 1;i <= cnt;++i) {
for (int j = 1;j <= cnt;++j) {
dis[i][j] = min(dis[i][k]+dis[k][j],dis[i][j]);
}
}
}
printf("%d\n",((ans>=0x3f3f3f3f) ? -1 : ans));
}